Abstract

The greedy spanner is arguably the simplest and most well-studied spanner construction. Experimental results demonstrate that it is at least as good as any other spanner construction, in terms of both the size and weight parameters. However, a rigorous proof for this statement has remained elusive. In this work we fill in the theoretical gap via a surprisingly simple observation: The greedy spanner is existentially optimal (or existentially near-optimal) for several important graph families. Focusing on the weight parameter, the state-of-the-art spanner constructions for both general graphs (due to Chechik and Wulff-Nilsen [SODA'16]) and doubling metrics (due to Gottlieb [FOCS'15]) are complex. Plugging our observation on these results, we conclude that the greedy spanner achieves near-optimal weight guarantees for both general graphs and doubling metrics, thus resolving two longstanding conjectures in the area. Further, we observe that approximate-greedy algorithms are existentially near-optimal as well. Consequently, we provide an O(n log n)-time construction of (1+epsilon)-spanners for doubling metrics with constant lightness and degree. Our construction improves Gottlieb's construction, whose runtime is O(n log2 n) and whose number of edges and degree are unbounded, and remarkably, it matches the state-of-the-art Euclidean result (due to Gudmundsson et al. [SICOMP'02]) in all the involved parameters (up to dependencies on epsilon and the dimension).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call