Abstract

We prove that a valuation domain V has Krull dimension ≤ 1 if and only if for every finitely generated ideal I of V[X] the ideal generated by the leading terms of elements of I is also finitely generated. This proves the Grobner ring conjecture in one variable. The proof we give is both simple and constructive. The same result is valid for semihereditary rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.