Abstract

The westerly phase of the stratospheric Quasi-Biennial Oscillation (QBO) was unprecedentedly interrupted by an easterly jet at around 22 km during boreal wintertime in 2015/2016 and 2019/2020. Many studies have investigated the role of planetary waves during these disruptions. However, the behavior of gravity waves (GWs) during these disruptions is still unclear. In this paper, we investigated the characteristics of stratospheric GWs during QBO disruptions by analyzing the U.S. high-resolution radiosonde data from 1998 to 2021 from three equatorial stations. The disruptions were separated into three stages: the westerly zonal wind decreasing stage, the easterly zonal wind developing stage, and the westerly zonal wind recovery stage. Notably, the tropical stratospheric GWs’ total energy densities were enhanced during all three stages of both events compared to those in typical years. The low-tropospheric convection, the middle-tropospheric jet, and the low-stratospheric vertical wind shear were statistically associated with the stratospheric GW variations. A quantitative analysis further indicated that the low-tropospheric convection activity, tropospheric jets, and wind shears in the lower stratosphere could well explain the variations in the stratospheric GWs in the westerly zonal wind decreasing and easterly zonal wind developing stages by applying a partial least squares regress analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call