Abstract

Evidence for free precession has been observed in the radio signature of several pulsars. Freely precessing pulsars radiate gravitationally at frequencies near the rotation rate and twice the rotation rate, which for rotation frequencies greater than ∼10 Hz is in the LIGO band. In older work, the gravitational wave spectrum of a precessing neutron star has been evaluated to first order in a small precession angle. Here, we calculate the contributions to second order in the wobble angle, and we find that a new spectral line emerges. We show that for reasonable wobble angles, the second-order line may well be observable with the proposed advanced LIGO detectors for precessing neutron stars as far away as the galactic centre. Observation of the full second-order spectrum permits a direct measurement of the star's wobble angle, oblateness and deviation from axisymmetry, with the potential to significantly increase our understanding of neutron star structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.