Abstract

The family of GRAS plant-specific transcription factor plays diverse roles in numerous biological processes. Despite the identification and characterization of GRAS genes family in dozens of plant species, until now, GRAS members in watermelon (Citrullus lanatus) have not been investigated comprehensively. In this study, using bioinformatic analysis, we identified 37 GRAS genes in the watermelon genome (ClGRAS). These genes are classified into 10 distinct subfamilies based on previous research, and unevenly distributed on 11 chromosomes. Furthermore, a complete analysis was conducted to characterize conserved motifs and gene structures, which revealed the members within same subfamily that have analogous conserved gene structure and motif composition. Additionally, the expression pattern of ClGRAS genes was characterized in fruit flesh and rind tissues during watermelon fruit development and under red light (RL) as well as root knot nematode infestation. Finally, for verification of the availability of public transcriptome data, we also evaluated the expression levels of randomly selected four ClGRAS genes under RL and nematode infection by using qRT-PCR. The qRT-PCR results indicated that several ClGRAS genes were differentially expressed, implying their vital role in RL induction of watermelon resistance against root-knot nematodes. The results obtained in this study could be useful in improving the quality of watermelon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.