Abstract

AbstractThe shale-dominated hemipelagic succession exposed in the southwestern part of the Prague Synform preserves the most complete Ludfordian graptolite record so far encountered from peri-Gondwanan Europe. Four graptolite biozones – theNeocucullograptus inexpectatus,Nc. kozlowskii,Pseudomonoclimacis latilobus–Slovinograptus balticusandPristiograptus fragmentalisbiozones – are recognized in the middle and late Ludfordian, between theBohemograptus tenuisBiozone and the base of the Pridoli Series. Conodont occurrences are restricted to scattered limestone beds, but enable tentative integration of the graptolite and conodont biozonal schemes. Particular attention was paid to faunal and sedimentary changes and the carbon isotope record across the middle Ludfordian Kozlowskii extinction Event. The Kozlowskii Event caused the almost simultaneous extinction of graptolites with ventrally curved rhabdosomes. The generaBohemograptus,PolonograptusandNeocucullograptus, along withPseudomonoclimacis dalejensis, disappeared from the fossil record. The offshore conodont fauna recorded in the section was not strongly affected and similarly the pelagic orthocerids and nektonicCeratiocarispassed unaffected through the extinction interval. The abundant and widespread pelagic myodocopid ostracodEntomis, however, became extinct. The late Ludfordian graptolite recovery gave origin to a novel fauna of Pridoli type from taxa that emerged or just reappeared above the Kozlowskii crisis. In Všeradice and elsewhere in the Prague Synform, the recovery, manifested by the appearance ofPseudomonoclimacis latilobusandSlovinograptus balticus, closely postdates the end of the isotope excursion but pre-dates the first appearance of the conodont index ‘Ozarkodina’snajdri. Here the graptolite recovery was delayed relative to the recovery of the benthic fauna. A canalized intraformational limestone conglomerate corresponds with a gap in the sedimentary record above the Kozlowskii extinction and just below the graptolite recovery. The benthic faunas from the conglomerate matrix and pebbles permit correlation with the shallower part of the basin indicating a distinct fall in sea-level. The present data demonstrate the coincidence of the graptolite crisis with benthic faunal change and eustatic fall in sea-level manifested by facies change and the carbon isotope excursion.Polonograptus chlupacisp. nov., from theNc. kozlowskiiBiozone, is described and several other graptolite taxa are redescribed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call