Abstract

In aqueous solution, a non-toxic fluorescent nanosensor incorporating graphene quantum dots encased in molecularly imprinted polymer (GQDs-encased in MIP) is manufactured through a straightforward sol-gel process. During the polymerization process, the functional monomer 3-aminopropyltriethoxysilane (APTES) and the cross-linker tetraethyl orthosilicate (TEOS) were utilized to bind the biotin in a polymer network. The resulting GQDs@MIP nanocomposite outperformed the similar non-imprinted polymer (GQDs-encased in NIP) in terms of biotin selectivity. Under ideal conditions, the produced GQD-encased in MIP are employed to detect biotin by quenching their fluorescence caused by the target analyte via photo induced electron transfer (PET). The quenching curves of each GQDs-encased in polymer were fitted with the Stern-Volmer-type equation, and GQDs-encased in MIP had a broader linear range and a lower limit of detection than GQDs-encased in NIP. GQDs-encased in MIP fluorescence response is linear with respect to biotin concentration over a wide linear range of at least 0.4 μmol L−1 to 6.7 μmol L−1. The detection limit for biotin determination was 315 nmol L−1. The suggested GQDs-encased in MIP is promising for the measurement of trace biotin in human serum samples because to its non-toxicity, simplicity, and low cost, as well as its strong analytical performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call