Abstract

Endomorphisms of Weyl algebras are studied using bimodules. Initially, for a Weyl algebra over a field of characteristic zero, Bernstein's inequality implies that holonomic bimodules finitely generated from the right or left form a monoidal category. The most important bimodule in this paper is the graph of an endomorphism. We prove that the graph of an endomorphism of a Weyl algebra over a field of characteristic zero is a simple bimodule. The simplicity of the tensor product of the dual graph and the graph is equivalent to the Dixmier conjecture. It is also shown how the graph construction leads to a non-commutative Groebner basis algorithm for detecting invertibility of an endomorphism for Weyl algebras and computing the inverse over arbitrary fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.