Abstract
Graph association is the problem of merging many graphs that collectively describe a set of possibly repetitive entities and relationships into a single graph that contains unique entities and relationships. As a form of data association, graph association can be used to identify when two sensors are observing the same object so information from both sensors can be combined and analyzed in a meaningful and consistent way. Graph association between two graphs is related to the problem of graph matching, and between multiple graphs it is related to the common labeling of a graph set (also known as multiple graph matching) problem. This article contribution is to formulate graph association as a binary linear program and introduce a heuristic for solving multiple graph association using a Lagrangian relaxation approach to address issues with between-graph transitivity requirements. The algorithms are tested on a representative dataset. The developed model formulation was found to accurately solve the graph association problem. Furthermore, the Lagrangian heuristic was found to solve the developed model within 3% of optimal on many problem instances, and found better solutions to large problems than is possible by directly using CPLEX. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.