Abstract

AbstractBACKGROUNDScaling up bioelectrochemical systems for the treatment of wastewater faces challenges. Material costs, low conductivity of wastewater and clogging are issues that need a novel approach. The granular capacitive moving bed reactor can potentially solve these challenges. In this reactor, capacitive activated carbon granules are used as bioanode material. The charge storage capabilities of these capacitive granules allow for the physical separation of the charging and the discharging process and therefore a separation of the wastewater treatment and energy recovery process.RESULTSThis study investigates the performance of the granular capacitive moving bed reactor. In this reactor, activated granules were transported from the bottom to the top of the reactor using a gas lift and settled on top of the granular bed, which moved downwards through the internal discharge cell. This moving granular bed was applied to increase the contact time with the discharge anode to increase the current density. The capacitive moving bed reactor (total volume 7.7 L) produced a maximum current of 23 A m−2 normalized to membrane area (257 A m−3granules). Without granules, the current was only 1.4 A m−2membrane. The activity of the biofilm on the granules increased over time, from 436 up to 1259 A m−3granules. A second experiment produced similar areal current density and increase in activity over time.CONCLUSIONWhereas the produced current density is promising for further scaling up of bioanodes, the main challenges are to improve the discharge of the charged granules and growth of biofilm on the granules under shear stress. © 2019 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.