Abstract

The mechanism underlying the grain refinement of cast aluminium by zirconium has been studied through examination of a range of Al alloys with increasing Zr contents. Pro-peritectic Al3Zr particles are reproducibly identified at or near the grain centres in grain-refined alloy samples based on the observations of optical microscopy, scanning electron microscopy and X-ray diffraction. From the crystallographic study using the edge-to-edge matching model, electron backscatter diffraction and transmission electron microscopy, it is substantiated that the Al3Zr particles are highly potent nucleants for Al. In addition, the effects of Al3Zr particle size and distribution on grain refinement has also been investigated. It has been found that the active Al3Zr particles are bigger than previously reported other types of active particles, such as TiB2 for heterogeneous nucleation in Al alloys. Considering the low growth restriction effect of Zr in Al (the maximum Q-value of Zr in Al is 1.0K), it is suggested that the significant grain refinement of Al resulting from the addition of Zr can be mainly attributed to the heterogeneous nucleation facilitated by the in situ formed Al3Zr particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.