Abstract

We study the mechanism of the self-oscillation instability associated with the nonlinear interaction of radiation with a moving active medium in a fast-flow gas laser. The results of our analytical and numerical calculations of the frequencies and increments of the small self-oscillation perturbations in an unstable cavity of the laser with a non-uniform pumping rate are presented. In the analytical model the small perturbations of the gain in each point of the flow consist of two parts. The first part includes the ‘local’ perturbations that are not related to a motion of the medium. The second part includes the ‘flow’ perturbations that arise upstream of the flow due to the gradients of the pumping rate and the laser field intensity. These perturbations are carried by the flow in the form of traveling waves. The interference of the ‘gradient’ waves of the flow perturbations results in the resonant properties of the feedback produced by the flow. It is demonstrated that it is feasible to control the lasing regime based on these resonant properties of the feedback. The simulation of the nonlinear lasing regimes demonstrates that the conversion of continuous lasing into the periodical self-pulsing regime is not accompanied by a significant reduction in the average power output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.