Abstract

Let eλ(x) be a Neumann eigenfunction with respect to the positive Laplacian Δ on a compact Riemannian manifold M with boundary such that Δeλ = λ2eλ in the interior of M and the normal derivative of eλ vanishes on the boundary of M. Let χλ be the unit band spectral projection operator associated with the Neumann Laplacian and f be a square integrable function on M. The authors show the following gradient estimate for χλ f as \(\lambda \geqslant 1:{\left\| {\nabla {\chi _\lambda }{\kern 1pt} \left. f \right\|} \right._\infty } \leqslant C\left( {\lambda \left\| {{\chi _\lambda }{{\left. f \right\|}_\infty } + \left. {{\lambda ^{ - 1}}} \right\|} \right.\Delta {\chi _\lambda }{{\left. f \right\|}_\infty }} \right)\), where C is a positive constant depending only on M. As a corollary, the authors obtain the gradient estimate of eλ: For every λ ≥ 1, it holds that \(\left\| {\nabla {{\left. {{e_\lambda }} \right\|}_\infty } \leqslant C\left. \lambda \right\|} \right.{\left. {{e_\lambda }} \right\|_\infty }\).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.