Abstract
We consider the gradient system $$\dot x(t)+\nabla\phi(x(t))=0$$ and the so-called heavy ball with friction dynamical system $$\ddot x(t) +\lambda\dot x(t)+\nabla\phi(x(t))=0$$, as well as an implicit discrete (proximal) version of it, and study the asymptotic behavior of their solutions in the case of a smooth and quasiconvex objective function Φ. Minimization properties of trajectories are obtained under various additional assumptions. We finally show a minimizing property of the heavy ball method which is not shared by the gradient method: the genericity of the convergence of each trajectory, at least when Φ is a Morse function, towards local minimum of Φ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.