Abstract

The Goodman–Nguyen relation is a partial order generalising the implication (inclusion) relation to conditional events. As such, with precise probabilities it both induces an agreeing probability ordering and is a key tool in a certain common extension problem. Most previous work involving this relation is concerned with either conditional event algebras or precise probabilities. We investigate here its role within imprecise probability theory, first in the framework of conditional events and then proposing a generalisation of the Goodman–Nguyen relation to conditional gambles. It turns out that this relation induces an agreeing ordering on coherent or C-convex conditional imprecise previsions. In a standard inferential problem with conditional events, it lets us determine the natural extension, as well as an upper extension. With conditional gambles, it is useful in deriving a number of inferential inequalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.