Abstract

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide belonging to the RFamide peptide family that was first discovered in quail by Tsutsui and co-workers in the year 2000. Since then, different GnIH orthologues have been identified in all vertebrate groups, from agnathans to mammals. These GnIH genes synthesize peptide precursors that encompass two to four C-terminal LPXRFamide peptides. Functional and behavioral studies carried out in birds and mammals have demonstrated a clear inhibitory role of GnIH on GnRH and gonadotropin synthesis and secretion as well as on aggressive and sexual behavior. However, the effects of Gnih orthologues in reproduction remain controversial in fish with both stimulatory and inhibitory actions being reported. In this paper, we will review the main findings obtained in our laboratory on the Gnih system of the European sea bass, Dicentrarchus labrax. The sea bass gnih gene encodes two putative Gnih peptides (sbGnih1 and sbGnih2), and is expressed in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, rostral rhombencephalon, retina and testis. The immunohistochemical study performed using specific antibodies developed in our laboratory revealed Gnih-immunoreactive (ir) perikarya in the same central areas and Gnih-ir fibers that profusely innervated the brain and pituitary of sea bass. Moreover, in vivo studies revealed the inhibitory role of centrally- and peripherally-administered Gnih in the reproductive axis of male sea bass, by acting at the brain (on gnrh and kisspeptin expression), pituitary (on gnrh receptors and gonadotropin synthesis and release) and gonadal (on androgen secretion and gametogenesis) levels. Our results have revealed the existence of a functional Gnih system in sea bass, and have provided evidence of the differential actions of the two Gnih peptides on the reproductive axis of this species, the main inhibitory role in the brain and pituitary being exerted by the sbGnih2 peptide. Recent studies developed in our laboratory also suggest that Gnih might be involved in the transduction of photoperiod and temperature information to the reproductive axis, as well as in the modulation of daily and seasonal rhythmic processes in sea bass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.