Abstract
Protein kinase C (PKC) plays a critical role in signal transduction controlling T lymphocyte activation. Both positive and negative regulation of signal transduction is needed for proper control of T lymphocyte activation. We have found that a golli product of the myelin basic protein (MBP) gene can serve as a negative regulator of signaling pathways in the T lymphocyte, particularly the PKC pathway. Increased expression of golli BG21 in Jurkat T cells strongly inhibits anti-CD3ε-induced IL-2-luciferase activity, an indicator of T lymphocyte activation. Golli BG21 can be phosphorylated by PKC in vitro and its phosphorylation increases in PMA-activated Jurkat cells. BG21 inhibits the PMA-induced increase in AP-1 or NF-κB activation, consistent with golli acting in a PKC-mediated cellular event. Golli BG21 inhibition of the PKC pathway is not due to a direct action on PKC activation but in the cascade following PKC activation, since BG21 neither reduces PKC enzyme activity nor blocks the membrane association of PKCθ brought on by T lymphocyte activation. The inhibitory function of BG21 is independent of its phosphorylation by PKC because a mutant BG21, in which the PKC sites have been mutated, is as effective as the wild type BG21 in inhibiting the PMA-induced AP-1 activation. Structure–function assays indicate that BG21 inhibitory activity resides in the golli domain rather than in MBP domain of the molecule. These results reveal a novel role for MBP gene products in T lymphocytes within the immune system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.