Abstract

At the onset of mitosis, the pericentriolar Golgi apparatus of mammalian cells is converted into small fragments, which are dispersed throughout the cytosol. The Golgi-associated protein GRASP65 is involved in this process. To address the role of GRASP65 in mitotic Golgi fragmentation, we depleted the protein from HeLa cells by RNAi. In the absence of GRASP65, the number of cisternae per Golgi stack is reduced without affecting the overall organization of Golgi membranes and protein transport. GRASP65-depleted cells entered mitosis, but accumulated in metaphase with condensed chromatin and multiple aberrant spindles and eventually died. Although Centrin2 and g-tubulin were detected in two of the spindle poles, the other spindle poles contained g-tubulin, but not Centrin2. Furthermore, we provide evidence that the expression of the C-terminus of GRASP65 interferes with entry of cells into mitosis. Our results suggest the requirement for GRASP65 in the regulation of spindle dynamics rather than a direct role in the stacking of Golgi cisternae. This novel function is in addition to the previously established negative role of GRASP65 at the G2/M transition, which is mediated by its C-terminus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.