Abstract

The ability of marine organisms to thrive over wide ranges of environmental stressors that perturb structures of proteins, nucleic acids, and lipids illustrates the effectiveness of adaptation at the biochemical level. A critical role of these adaptations is to achieve a proper balance between structural rigidity, which is necessary for maintaining three-dimensional conformation, and flexibility, which is required to allow changes in conformation during function. The Goldilocks principle refers to this balancing act, wherein structural stability and functional properties are poised at values that are just right for the environment the organism faces. Achieving this balance involves changes in macromolecular sequence and adaptive change in the composition of the aqueous or lipid milieu in which macromolecules function. This article traces the development of the field of biochemical adaptation throughout my career and shows how comparative studies of marine animals from diverse habitats have shed light on fundamental properties of life common to all organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call