Abstract

AbstractQuantitative electron backscatter diffraction analysis and ion microprobe imaging of gold‐rich arsenopyrites provide the first insights into the crystal plasticity and element mobility behaviour of arsenopyrites through metamorphism (340°–460° and 2 kbar). Remarkably, the gold‐rich arsenopyrites remained structurally and chemically robust during high strain deformation. It was only during a superimposed lower strain deformation event, at a high angle to the preferred orientation of the arsenopyrites, that small amounts of crystal plasticity affected the arsenopyrites. During the low strain event, a dissolution–reprecipitation reaction resulted in loss of gold from the crystal lattice, facilitated by localised domains of recrystallisation, most likely due to fluid percolation along sub‐ and new grain boundaries. We suggest that the abundance and rheologically robust nature of gold‐rich arsenopyrite in giant gold deposits, affected by greenschist–amphibolite metamorphism, is actually critical in the preservation of those deposits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.