Abstract

Gold porphyrins are often used as electron-accepting chromophores in artificial photosynthetic constructs. Because of the heavy atom effect, the gold porphyrin first-excited singlet state undergoes rapid intersystem crossing to form the triplet state. The lowest triplet state can undergo a reduction by electron donation from a nearby porphyrin or another moiety. In addition, it can be involved in triplet-triplet energy transfer interactions with other chromophores. In contrast, little has been known about the short-lived singlet excited state. In this work, ultrafast time-resolved absorption spectroscopy has been used to investigate the singlet excited state of Au(III) 5,15-bis(3,5-di-t-butylphenyl)-2,8,12,18,-tetraethyl-3,7,13,17-tetramethylporphyrin in ethanol solution. The excited singlet state is found to form with the laser pulse and decay with a time constant of 240 fs to give the triplet state. The triplet returns to the ground state with a life-time of 400 ps. The lifetime of the singlet state is comparable with the time constants for energy and photoinduced electron transfer in some model and natural photosynthetic systems. Thus, it is kinetically competent to take part in such processes in suitably designed supermolecular systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.