Abstract

Heat input in gas metal arc welding (GMAW) directly correlates with the applied current. As a result, welding irregularities, such as incomplete fusion and excessive penetration, increase and mechanical properties decrease. One way for adjusting heat input is to use hot wire technology. In this article, a two-dimensional arc deflection in GMAW was presented by simultaneous application of two alternating current (AC) hot wires. It is shown how the positioning of the hot wires and the signal characteristics of the current intensity influenced the deflection pattern and weld quality. It was found that the magnetic fields of the two hot wires overlapped due to the narrow opening between. Therefore, an increased one-dimensional deflection resulted. To obtain a two-dimensional deflection, it was necessary to shield the magnetic fields from each other by means of a ferritic material. By pulsing or phase shifting the current signals, individual deflection patterns were possible. The effect of arc deflection was visualized with highspeed recordings and metallographic investigations. Different deflection patterns were generated to adjust heat input and counteract weld irregularities. The use of hot wire technology allowed an increase in deposition rate by simultaneous improvement of weld quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call