Abstract

The effect of vitamin-D deficiency and subsequent vitamin-D replacement on the metabolism of rat epiphyseal growth plate cartilage was studied. Biochemical analyses showed the presence of the two unique glyoxylate cycle enzymes isocitrate lyase and malate synthase in cartilage. The activity of these enzymes was markedly increased after treatment with the vitamin. Additionally, rat cartilage showed the capacity to oxidize fatty acid in the presence of cyanide. This cyanide-insensitive fatty acid oxidation is characteristic of peroxisomal B-oxidation rather than mitochondrial B-oxidation. Vitamin-D treatment also increased fatty acid oxidation. Lastly, incubation of rat cartilage in the presence of a fatty acid substrate such as palmitate, resulted in a higher tissue glycogen content. Tissue glycogen was further elevated by vitamin-D. Such data indicate the presence of glyoxylate cycle enzymes in a vertebrate tissue and raise the possibility that mammalian cartilage has the capacity to convert lipid to carbohydrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.