Abstract

ABSTRACTLarge-conductance Ca2+- and voltage-activated potassium (MaxiK or BK) channels are composed of a pore-forming α subunit (Slo) and 4 types of auxiliary β subunits or just a pore-forming α subunit. Although multiple N-linked glycosylation sites in the extracellular loop of β subunits have been identified, very little is known about how glycosylation influences the structure and function of BK channels. Using a combination of site-directed mutagenesis, western blot and patch-clamp recordings, we demonstrated that 3 sites in the extracellular loop of β2 subunit are N-glycosylated (N-X-T/S at N88, N96 and N119). Glycosylation of these sites strongly and differentially regulate gating kinetics, outward rectification, toxin sensitivity and physical association between the α and β2 subunits. We constructed a model and used molecular dynamics (MD) to simulate how the glycosylation facilitates the association of α/β2 subunits and modulates the dimension of the extracellular cavum above the pore of the channel, ultimately to modify biophysical and pharmacological properties of BK channels. Our results suggest that N-glycosylation of β2 subunits plays crucial roles in imparting functional heterogeneity of BK channels, and is potentially involved in the pathological phenotypes of carbohydrate metabolic diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.