Abstract
Methadone remains the most common form of pharmacological therapy for opioid dependence; however, there is a lack of explanation for the reports of its relatively low success rate in achieving complete abstinence. One hypothesis is that in vivo binding of methadone to the plasma glycoprotein alpha-1-acid glycoprotein (AGP), to a degree dependent on the molecular structure, may render the drug inactive. This study sought to determine whether alterations present in the glycosylation pattern of AGP in patients undergoing various stages of methadone therapy (titration < two weeks, harm reduction < one year, long-term > one and a half years) could affect the affinity of the glycoprotein to bind methadone. The composition of AGP glycosylation was determined using high pH anion exchange chromatography (HPAEC) and intrinsic fluorescence analysed to determine the extent of binding to methadone. The monosaccharides galactose and N-acetyl-glucosamine were elevated in all methadone treatment groups indicating alterations in AGP glycosylation. AGP from all patients receiving methadone therapy exhibited a greater degree of binding than the normal population. This suggests that analysing the glycosylation of AGP in patients receiving methadone may aid in determining whether the therapy is likely to be effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.