Abstract
The structural features of the heterodimeric glycoprotein hormones (LH, FSH, TSH, and hCG) are briefly reviewed. Removal of carbohydrate chains does not reduce binding of the hormones to membrane receptors, but markedly reduces biological responses. The glycopeptides from the hormone do not reduce binding of native hormone to receptors but do reduce biological responses. Newer data concerned with replication of different regions of the peptide chains of these molecules using synthetic peptides are reviewed and presented. These studies indicate that two regions on the common alpha subunit are involved with receptor binding of the LH, hCG, and TSH molecules. These regions are alpha 26 to 46 and alpha 75-92. Two synthetic disulfide loop peptides from the hCG beta subunit beta 38-57 and beta 93-100 also block binding of hCG to its receptor. In addition, the beta 38-57 peptide stimulates testosterone production by Leydig cells. These data indicate that glycoprotein hormone binding to plasma membrane receptors involves a discontinuous site on the hormone that spans both the alpha and beta subunits, and that the alpha subunit sites are similar for several hormones.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.