Abstract
Hantavirus infection, which causes severe zoonotic diseases with high mortality in humans, has become a global public health concern. Here, we demonstrate that Hantaan virus (HTNV), the prevalent prototype of the hantavirus in Asia, can restrain innate immune responses by manipulating host autophagy flux. HTNV induces complete mitophagy at the early stage of infection but incomplete autophagy at the late stage, and these responses involve the viral glycoprotein (Gn) and nucleocapsid protein (NP), respectively. Gn translocates to mitochondria and interacts with TUFM, recruiting LC3B and promoting mitophagy. Gn-induced mitophagy inhibits type I interferon (IFN) responses by degrading MAVS. Additionally, we found that NP competes with Gn for binding to LC3B, which inhibits Gn-mediated autophagosome formation, and interacts with SNAP29, which prevents autophagosome-lysosome fusion. Thus, NP disturbs the autophagic degradation of Gn. These findings highlight how hantaviruses repurpose host autophagy and evade innate immune responses for their life cycle and pathogenesis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.