Abstract

Recent molecular studies indicate that aerobic glycolysis plays an important role in tumorigenesis and is a valid target for cancer therapy. Although 2-deoxyglucose (2-DG) is well characterized as a glycolytic inhibitor, we recently discovered that it activates a prosurvival oncoprotein, AKT, through PI3K. In this study, we discovered that 2-DG treatments disrupted the binding between insulin-like growth factor 1 (IGF-1) and IGF-binding protein 3 (IGFBP3) so that the free form of IGF-1 could be released from the IGF-1.IGFBP3 complex to activate IGF-1 receptor (IGF1R) signaling. Because IGF1R signaling is involved, PI3K/AKT constitutes only one of the prosurvival pathways that are activated by 2-DG treatment; we validated that MEK-ERK signaling was also induced in an IGF1R-dependent manner in some cancer cell lines. Furthermore, our phospho-specific antibody microarray analysis indicated that 2-DG up-regulated the phosphorylation of 64 sites within various signaling pathways in H460 cells. Chemical inhibition of IGF1R reduced 57 of these up-regulations. These data suggest that 2-DG-induced activation of many survival pathways can be jointly attenuated through IGF1R inhibition. Our in vitro analysis demonstrated that treatment with a combination of subtoxic doses of 2-DG and the IGF1R inhibitor II reduced cancer cell proliferation 90% and promoted significant apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.