Abstract

Albuminuria is commonly used as a marker of kidney disease progression, but some evidence suggests that albuminuria also contributes to disease progression by inducing renal injury in specific disease conditions. Studies have confirmed that in patients with cardiovascular risk factors, such as diabetes and hypertension, endothelial damage drives progression of kidney disease and cardiovascular disease. A key mechanism that contributes to this process is the loss of the glycocalyx--a polysaccharide gel that lines the luminal endothelial surface and that normally acts as a barrier against albumin filtration. Degradation of the glycocalyx in response to endothelial activation can lead to albuminuria and subsequent renal and vascular inflammation, thus providing a pathophysiological framework for the clinical association of albuminuria with renal and cardiovascular disease progression. In this Review, we examine the likely mechanisms by which glycocalyx dysfunction contributes to kidney injury and explains the link between cardiovascular disease and albuminuria. Evidence suggests that glycocalyx dysfunction is reversible, suggesting that these mechanisms could be considered as therapeutic targets to prevent the progression of renal and cardiovascular disease. This possibility enables the use of existing drugs in new ways, provides an opportunity to develop novel therapies, and indicates that albuminuria should be reconsidered as an end point in clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.