Abstract

Reversible protein glutathionylation is an important posttranslational modification that provides protection against oxidation. In endothelial cells (ECs), cinnamaldehyde is an electrophilic compound that can increase the intracellular glutathione (GSH) levels or reactive oxygen species (ROS) production depending on the treatment duration. ECs treated with GSH and H(2)O(2) show increased sulfhydryl modifications of the p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB), which are responsible for NF-kappaB inactivation, and also a block in TNF-alpha-induced p65 nuclear translocation and inter-cellular adhesion molecule-1 (ICAM-1) expression. In our current study, we find that cinnamaldehyde induces p65 glutathionylation and inhibits TNF-alpha-induced p65 nuclear translocation and ICAM-1 expression within 12 h of treatment. Our analyses also reveal that p65 glutathionylation is suppressed by a GSH synthesis inhibitor, buthionine sulfoximine (BSO), and we further observed that the inhibitory effects of p65 nuclear translocation and ICAM-1 expression are also suppressed by BSO. NF-E2-related factor-2 small interfering RNA (siRNA) molecules not only inhibit glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM) induction and increases in GSH but also abolish cinnamaldehyde-induced p65 glutathionylation and its inhibitory effects. The gene expression and activity of glutaredoxin-1 (Grx-1), which catalyzes the formation of protein-glutathione mixed disulfides (protein-SSG), were also found to be increased after cinnamaldehyde treatment. A knock down of endogenous Grx-1 by siRNA or pretreatment with an inhibitor of Grx-1 activity, CdCl(2), abolishes p65-SSG formation. In addition, Grx-1 siRNA blocks the inhibition of p65 nuclear translocation and ICAM-1 expression, suggesting that this enzyme is involved in the cinnamaldehyde-mediated NF-kappaB inhibition. Our current results thus indicate that the GSH/Grx-1-dependent glutathionylation of p65 is likely to be responsible for cinnamaldehyde-mediated NF-kappaB inactivation and for the enhanced inhibitory effects of cinnamaldehyde upon TNF-alpha-treated ECs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.