Abstract

Damaraland mole-rats (Fukomys damarensis) are a hypoxia-tolerant fossorial species that exhibit a robust hypoxic metabolic response (HMR) and blunted hypoxic ventilatory response (HVR). Whereas the HVR of most adult mammals is mediated by increased excitatory glutamatergic signalling, naked mole-rats, which are closely related to Damaraland mole-rats, do not utilize this pathway. Given their phylogenetic relation and similar lifestyles, we hypothesized that the signalling mechanisms underlying physiological responses to acute hypoxia in Damaraland mole-rats are like those of naked mole-rats. To test this, we used pharmacological antagonists of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs), combined with plethysmography, respirometry, and thermal RFID chips to non-invasively evaluate the role of excitatory AMPAR and NMDAR signalling in mediating ventilatory, metabolic, and thermoregulatory responses, respectively, to 1h of 5 or 7% O2. We found that AMPAR or NMDAR antagonism have minimal impacts on the HMR or hypoxia-mediated changes in thermoregulation. Conversely, the "blunted" HVR of Damaraland mole-rats is reduced by either AMPAR or NMDAR antagonism such that the onset of the HVR occurs in less severe hypoxia. In more severe hypoxia, antagonists have no impact, suggesting that these receptors are already inhibited. Together, these findings indicate that the glutamatergic drive to breath decreases in Damaraland mole-rats exposed to severe hypoxia. These findings differ from other adult mammals, in which the glutamatergic drive to breath increases with hypoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call