Abstract

Plant glutamate-like receptors (GLRs), which are homologs of mammalian ionotropic glutamate receptors (iGluRs), are thought to be involved in plant growth, development, and environmental stress responses. In this study, we demonstrated that two members of Arabidopsis glutamate-like receptors, AtGLR1.2 and AtGLR1.3, play positive roles in the plant response to cold stress. Genetic and biochemical experiments revealed that exogenous jasmonate could attenuate the cold sensitivity of glr1.2 and glr1.3 mutants, and the overexpression of GLR1.2 or GLR1.3 enhanced cold tolerance by increasing endogenous jasmonate levels under cold stress. In addition, the expression of genes in the CBF/DREB1 signaling pathway was decreased in the glr1.2 and glr1.3 mutants, but was promoted in GLR1.2-OE and GLR1.3-OE transgenic plants compared with the wild-type during cold treatment. Further investigation revealed that AtGLR1.2 and AtGLR1.3 independently drove similar functions without directly interacting. Together, our findings suggest that AtGLR1.2 and 1.3 positively enhance cold tolerance in Arabidopsis by activating endogenous jasmonate accumulation and subsequently promoting the downstream CBF/DREB1 cold response pathway during cold stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.