Abstract

Clear cell renal cell carcinoma (ccRCC) has a poor prognosis despite novel biological targeted therapies. Tumor aggressiveness and poor survival may correlate with tumor grade at diagnosis and with complex metabolic alterations, also involving glucose and lipid metabolism. However, currently no grade-specific metabolic therapy addresses these alterations. Here we used primary cell cultures from ccRCC of low- and high-grade to investigate the effect on energy state and reduced pyridine nucleotide level, and on viability and proliferation, of specific inhibition of glycolysis with 2-deoxy-D-glucose (2DG), or fatty acid oxidation with Etomoxir. Our primary cultures retained the tissue grade-dependent modulation of lipid and glycogen storage and aerobic glycolysis (Warburg effect). 2DG affected lactate production, energy state and reduced pyridine nucleotide level in high-grade ccRCC cultures, but the energy state only in low-grade. Rather, Etomoxir affected energy state in high-grade and reduced pyridine nucleotide level in low-grade cultures. Energy state and reduced pyridine nucleotide level were evaluated by ATP and reduced 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) dye quantification, respectively. 2DG treatment impaired cell proliferation and viability of low-grade ccRCC and normal cortex cultures, whereas Etomoxir showed a cytostatic and cytotoxic effect only in high-grade ccRCC cultures. Our data indicate that in ccRCC the Warburg effect is a grade-dependent feature, and fatty acid oxidation can be activated for different grade-dependent metabolic needs. A possible grade-dependent metabolic therapeutic approach in ccRCC is also highlighted.

Highlights

  • Clear cell renal cell carcinoma is the most common (70–80%) and lethal subtype of renal cell carcinomas and accounts for 90% of all kidney cancers [1]

  • The “clear cell” morphology of Clear cell renal cell carcinoma (ccRCC) tissues due to neutral lipid and glycogen storage is maintained in primary cell cultures

  • In ccRCC primary cultures, we found a significant enrichment for 35 GObiological process (BP) terms related to several classes of metabolic processes (Figure 2)

Read more

Summary

Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common (70–80%) and lethal subtype of renal cell carcinomas and accounts for 90% of all kidney cancers [1]. Transcriptomic, proteomic and metabolomic profiling of ccRCC tissues support this involvement revealing metabolic reprogramming characterized by up-regulation of aerobic glycolysis (Warburg effect), the pentose phosphate pathway, fatty acid synthesis, glutamine and glutathione metabolism, and by down-regulation of the tricarboxylic acid (TCA) cycle, fatty acid β oxidation (FAO), and oxidative phosphorylation [7,8,9,10]. By using different omics approaches, several groups revealed that specific metabolic alterations, in particular the down-regulation of TCA cycle and the up-regulation of pentose phosphate pathway and fatty acid synthesis, may correlate with tumor aggressiveness and poor survival in ccRCC patients [11, 7]. Even if different targeted therapeutics interfering with various aspects of RCC metabolism are currently in clinical development [14], at present there is no grade-specific therapy addressing this metabolic reprogramming

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call