Abstract

The GLT-1 and GLAST astroglial transporters are the glutamate transporters mainly involved in maintaining physiological extracellular glutamate concentrations. Defects in neurotransmitter glutamate transport may represent an important component of glutamate-induced neurodegenerative disorders (such as amyotrophic lateral sclerosis) and CNS insults (ischemia and epilepsy). We characterized the protein expression of GLT-1 and GLAST in primary astrocyte-neuron cocultures derived from rat hippocampal tissues during neuron differentiation/maturation. GLT-1 and GLAST are expressed by morphologically distinct glial fibrillary acidic protein-positive astrocytes, and their expression correlates with the status of neuron differentiation/maturation and activity. Up-regulation of the transporters paralleled the content of the synaptophysin synaptic vesicle marker p38, and down-regulation was a consequence of glutamate-induced neuronal death or the reduction of synaptic activity. Finally, soluble factors in neuronal-conditioned media prevented the down-regulation of the GLT-1 and GLAST proteins. Although other mechanisms may participate in regulating GLT-1 and GLAST in the CNS, our data indicate that soluble factors dependent on neuronal activity play a major regulating role in hippocampal cocultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.