Abstract

The water and energy in the land surface and lower atmosphere have a strong coupling relationship. Apart from the land surface temperature (Ts) and air temperature (Ta), the land surface-air temperature difference (Ts-Ta) is also an essential parameter reflecting the coupling process. However, the global spatiotemporal variations and influencing factors of Ts-Ta remain not well explored. Here, ERA5-land reanalysis data, GIMMS NDVI data, and elevation data were used to analyze the global spatiotemporal heterogeneity and influencing factors of Ts-Ta. It was found that annual mean Ts-Ta exhibited a decreasing trend from the equator to polar areas. And the annual Ts-Ta increased at 0.009 °C/10a from 1981 to 2020. The variations of global net radiation mainly determined the spatiotemporal heterogeneity of global Ts-Ta. The different properties of the land surface and near-surface atmosphere were the main factors affecting the Ts-Ta, including soil moisture, vegetation, snow cover, and the water vapor content in the atmosphere. In addition, Ts and Ta also affected each other. These findings are conducive to a better understanding of the land-atmosphere coupling, and it is of great significance to take better measures to adapt the global climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.