Abstract

The transcriptional regulator SugR from Corynebacterium glutamicum represses genes of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). Growth experiments revealed that the overexpression of sugR not only perturbed the growth of C. glutamicum on the PTS sugars glucose, fructose, and sucrose but also led to a significant growth inhibition on ribose, which is not taken up via the PTS. Chromatin immunoprecipitation combined with DNA microarray analysis and gel retardation experiments were performed to identify further target genes of SugR. Gel retardation analysis confirmed that SugR bound to the promoter regions of genes of the glycolytic enzymes 6-phosphofructokinase (pfkA), fructose-1,6-bisphosphate aldolase (fba), enolase (eno), pyruvate kinase (pyk), and NAD-dependent L-lactate dehydrogenase (ldhA). The deletion of sugR resulted in increased mRNA levels of eno, pyk, and ldhA in acetate medium. Enzyme activity measurements revealed that SugR-mediated repression affects the activities of PfkA, Fba, and LdhA in vivo. As the deletion of sugR led to increased LdhA activity under aerobic and under oxygen deprivation conditions, L-lactate production by C. glutamicum was determined. The overexpression of sugR reduced L-lactate production by about 25%, and sugR deletion increased L-lactate formation under oxygen deprivation conditions by threefold. Thus, SugR functions as a global repressor of genes of the PTS, glycolysis, and fermentative L-lactate dehydrogenase in C. glutamicum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call