Abstract

Conducting basic research, translating it into the development of new health tools, and delivering products to patients in need of them are core functions of an effective global health system [1]. Yet performing these functions is a particular challenge for diseases that primarily affect the poor in low-income countries, partly because efforts to understand diseases and develop tools to combat them are often detached from efforts to deliver interventions. For malaria, the global health system has evolved over the past century to integrate better the research, development, and delivery (R&D&D) of new products to treat and control the disease. This article traces that evolution and extracts lessons applicable to the many new challenges currently facing the global health system. Historically, global investment in malaria research has been disproportionately small relative to its disease burden. Research funding in endemic countries was seriously limited by resource and capacity constraints, while funding agencies in industrialized countries were primarily concerned with domestic health issues, with the important exception of military needs to control malaria. Recently, however, global malaria R&D investments have increased dramatically, from an estimated $84 million in 1993 [2] to $323 million in 2004 [3], with a new focus on malaria's impacts on people in endemic countries. In malaria control, there has been a concomitant shift from time-limited, centralized efforts—often relying on single interventions—toward a more decentralized, continuous effort using multiple approaches. Malaria is no longer seen primarily as a biomedical problem, but rather as a complex ecological system in which humans, mosquitoes, and parasites are interconnected. Malaria has also increasingly been characterized as a “global” and regional rather than a national or local problem. This has led to changed concepts of governance. Such governance has changed in two ways: (1) from an essentially “top-down” process from international to national or local players to an active interplay between local and global players, and (2) from a system that centered on the World Health Organization (WHO), with little attention to national governments in endemic countries, to one in which state and non-state actors cooperate across multiple dimensions, emphasizing inclusion and engagement of local communities. Today, for the first time, the principal constraints to malaria control may be more political and managerial than financial or technical. This article explores the changing global health system for malaria research and the delivery of research products to those at risk, including the organizations and actors involved, and the arrangements that govern their interactions (for more about these actors and arrangements, see the first article in this four-part series [1]). Following Alilio and colleagues [4], we have divided the evolution of malaria RD although these divisions are somewhat arbitrary, they highlight major shifts in the system's development. Finally we address the lessons learned and speculate about the future. Table 1 Evolution of institutional arrangements for malaria R&D. Phase I. Late Nineteenth Century through the 1950s: National Public Goods R&D The early driver of malaria research was the desire of the European colonial powers to protect their own nationals and the economic interests in their colonies. This investment led to many discoveries, including identification of the cause, vector, and transmission cycle of malaria. Later, when malaria debilitated allied soldiers in World War II (WWII), military needs drove malaria R&D. None of the principal malaria medicines of the twentieth century would have been discovered without military R&D [5]–[8]. Even insecticide-treated bed nets (ITNs) [9] and household spraying with DDT were used effectively by the allied militaries in WWII [6],[10]. During this long period, innovation followed a distinct trickle-down pattern. Researchers in the North produced knowledge to serve their own national needs, and only later was it applied for the benefit of low-income countries. While these R&D efforts ultimately created global benefits, the institutions that guided and benefited from the research were in rich countries. The drawback for low-income countries was that tools developed for militaries of the North were not necessarily well-suited for civilians in the South. Cost was not a major issue for the North, and because antimalarial drugs were targeted at adults, testing in children was a low priority, although children account for most malaria deaths. As the US Military Infectious Diseases Research Program recently pointed out, “Preventing death in children and keeping soldiers healthy and effective are distinct goals requiring different research strategies” [11].

Highlights

  • Conducting basic research, translating it into the development of new health tools, and delivering products to patients in need of them are core functions of an effective global health system [1]

  • The past 30 years has witnessed significant shifts in the types of actors and the roles they play in malaria research and control, with gradually increasing integration of the research and development (R&D)&D communities

  • We have reviewed the century-long effort to research malaria, to develop tools for control, and to implement them

Read more

Summary

Introduction

Conducting basic research, translating it into the development of new health tools, and delivering products to patients in need of them are core functions of an effective global health system [1]. Performing these functions is a particular challenge for diseases that primarily affect the poor in low-income countries, partly because efforts to understand diseases and develop tools to combat them are often detached from efforts to deliver interventions. The global health system has evolved over the past century to integrate better the research, development, and delivery (R&D&D) of new products to treat and control the disease.

Malaria and other tropical infectious diseases
Conclusions
Findings
Author Contributions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.