Abstract

Progress in key social-ecological challenges of the global environmental agenda (e.g., climate change, biodiversity conservation, Sustainable Development Goals) is hampered by a lack of integration and synthesis of existing scientific evidence. Facing a fast-increasing volume of data, information remains compartmentalized to pre-defined scales and fields, rarely building its way up to collective knowledge. Today's distributed corpus of human intelligence, including the scientific publication system, cannot be exploited with the efficiency needed to meet current evidence synthesis challenges; computer-based intelligence could assist this task. Artificial Intelligence (AI)-based approaches underlain by semantics and machine reasoning offer a constructive way forward, but depend on greater understanding of these technologies by the science and policy communities and coordination of their use. By labelling web-based scientific information to become readable by both humans and computers, machines can search, organize, reuse, combine and synthesize information quickly and in novel ways. Modern open science infrastructure—i.e., public data and model repositories—is a useful starting point, but without shared semantics and common standards for machine actionable data and models, our collective ability to build, grow, and share a collective knowledge base will remain limited. The application of semantic and machine reasoning technologies by a broad community of scientists and decision makers will favour open synthesis to contribute and reuse knowledge and apply it toward decision making.

Highlights

  • Progress in key social-ecological challenges of the global environmental agenda is hampered by a lack of integration and synthesis of existing scientific evidence

  • As volumes of data increase rapidly, information reuse remains compartmentalized within pre-defined scales and fields, too rarely building its way up to collective knowledge

  • We argue that an Artificial Intelligence (AI)-facilitated approach based on semantics and machine reasoning offers a feasible path forward to connect the data and digital technologies that are held by the academic, public and private sectors, so they can generate real-time insight about the state of the planet at any scale

Read more

Summary

Introduction

Progress in key social-ecological challenges of the global environmental agenda (e.g., climate change, biodiversity conservation, Sustainable Development Goals) is hampered by a lack of integration and synthesis of existing scientific evidence. Addressing them efficiently requires unprecedented integration and synthesis of evidence (including data and models produced by the scientific community, and traditional and stakeholder knowledge) that can lead

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.