Abstract

We show that the global dimension, dgA, of every commutative Banach algebra A whose radical is a weighted convolution algebra is strictly greater than one. As an application, we see that in this case H2(A, X) ≠ 0 for some Banach A-bimodule X and thus there exists an unsplittable singular extension of the algebra A.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.