Abstract

The non-mevalonate or 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is responsible for generating isoprenoid precursors in plants, protozoa, and bacteria. Because this pathway is absent in humans, its enzymes represent potential targets for the development of herbicides and antibiotics. 1-Deoxy-d-xylulose (DXP) reductoisomerase (DXR) is a particularly attractive target that catalyzes the pathway’s first committed step: the sequential isomerization and NADPH-dependent reduction of DXP to MEP. This article provides a comprehensive review of the mechanistic and structural investigations on DXR, including its discovery and validation as a drug target, elucidation of its chemical and kinetic mechanisms, characterization of inhibition by the natural antibiotic fosmidomycin, and identification of structural features that provide the molecular basis for inhibition of and catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.