Abstract

Microglia are resident immunosurveillant cells in the central nervous system, and astrocytes are important for blood flow, plasticity, and neurotransmitter regulation. The aim of this study was to investigate whether astrocyte and microglial activation, estimated through markers in cerebrospinal fluid and serum, differed between synucleinopathies, tauopathies, and controls. We analyzed the glial activation markers YKL-40 and soluble CD14 in serum and cerebrospinal fluid from 37 controls, 50 patients with Parkinson's disease (PD), and 79 P+ patients (those with progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy). Cerebrospinal fluid levels of YKL-40 were decreased significantly in patients who had PD compared with controls (P < 0.05), patients who had multiple system atrophy (P < 0.01), and patients who had tauopathies (P < 0.0001). In addition, cerebrospinal fluid levels of YKL-40 were significantly lower in patients who had synucleinopathies than in those who had tauopathies (P < 0.0001). The decreased cerebrospinal fluid levels of YKL-40 suggest that glial activation is reduced in the brains of patients who have Parkinson's disease and synucleinopathies compared with patients who have tauopathies and controls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call