Abstract

The cellular skeleton of the adult rat fimbria consists of regularly spaced interfascicular glial rows of considerable length, running in the longitudinal (axonal) axis of the tract. Each row consists of a series of repeated segments made up of a stretch of interfascicular oligodendrocytes lying in direct contact with each other, and separated from the adjacent segments by usually solitary interfascicular astrocytes. A typical segment would be around 60 microns long, and have an axial core of about eight contiguous oligodendrocytes surrounded by a shell of about 1,200 axons, 70% of which are myelinated. In the transverse plane of the tract, adjacent segments are stacked together with a core-to-core distance of around 15 microns. The interfascicular oligodendrocytes have radial stem processes (in a plane transverse to the axonal axis) which give rise to the longitudinal myelinating (internodal) processes. Both transverse and longitudinal oligodendrocytic processes are longer than the dimensions of the segment (in which their cell bodies lie) and its axonal shell. They thus cooperate in myelinating axons of adjacent segments in both planes. The interfascicular astrocytes have three distinct types of processes: radial, longitudinal, and vascular (bearing end feet). The radial astrocytic processes are thick and tapering, and the processes of individual astrocytes extend transversely (in the plane of the original embryonic radial glial processes) for a total of at least 100 microns. The considerably more numerous longitudinal astrocytic processes arise from all parts of the cell bodies and radial processes. They are up to at least 30 microns long, thin, untapering, and largely unbranched, and are interdigitated among the fimbrial axons. In the radial plane, the astrocytic radial processes spread out through a wide swathe of adjacent segments, so that the integrated meshwork of interpenetrating longitudinal processes arising from overlapping radial processes of astrocytes from many different interfascicular rows provides a continuous longitudinal substrate for the fimbrial axons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.