Abstract

BackgroundThe unique properties of wheat flour primarily depend on gluten, which is the most important source of protein for human being. γ-Gliadins have been considered to be the most ancient of the wheat gluten family. The complex family structure of γ-gliadins complicates the determination of their function. Moreover, γ-gliadins contain several sets of celiac disease epitopes. However, no systematic research has been conducted yet.ResultsA total of 170 γ-gliadin genes were isolated from common wheat and its closely related species, among which 138 sequences are putatively functional. The ORF lengths of these sequences range from 678 to 1089 bp, and the repetitive region is mainly responsible for the size heterogeneity of γ-gliadins. The repeat motif P(Q/L/S/T/I/V/R/A)F(S/Y/V/Q/I/C/L)P(R/L/S/T/H/C/Y)Q1–2(P(S/L/T/A/F/H)QQ)1–2is repeated from 7 to 22 times. Sequence polymorphism and linkage disequilibrium analyses show that γ-gliadins are highly diverse. Phylogenic analyses indicate that there is no obvious discrimination between Sitopsis and Ae. tauschii at the Gli-1 loci, compared with diploid wheat. According to the number and placement of cysteine residues, we defined nine cysteine patterns and 17 subgroups. Alternatively, we classified γ-gliadins into two types based on the length of repetitive domain. Amino acid composition analyses indicate that there is a wide range of essential amino acids in γ-gliadins, and those γ-gliadins from subgroup SG-10 and SG-12 and γ-gliadins with a short repetitive domain are more nutritional. A screening of toxic epitopes shows that γ-gliadins with a pattern of C9 and γ-gliadins with a short repetitive domain almost lack any epitopes.Conclusionγ-Gliadin sequences in wheat and closely related Aegilops species are diverse. Each group/subgroup contributes differently to nutritional quality and epitope content. It is suggested that the genes with a short repetitive domain are more nutritional and valuable. Therefore, it is possible to breed wheat varieties, the γ-gliadins of which are less, even non-toxic and more nutritional.

Highlights

  • The unique properties of wheat flour primarily depend on gluten, which is the most important source of protein for human being. γ-Gliadins have been considered to be the most ancient of the wheat gluten family

  • A total of 170 γ-gliadin genes were isolated from common wheat and its closely related species (Table 1)

  • It is notable that FJ006717 amplified from Ae. sharonesis is the shortest γ-gliadin gene so far reported (678 bp), whose repetitive region has 46 amino acid residues

Read more

Summary

Introduction

The unique properties of wheat flour primarily depend on gluten, which is the most important source of protein for human being. γ-Gliadins have been considered to be the most ancient of the wheat gluten family. The unique properties of wheat flour primarily depend on gluten, which is the most important source of protein for human being. Γ-Gliadins have been considered to be the most ancient of the wheat gluten family. The unique properties of wheat flour primarily depend on seed storage proteins, which mainly consist of gluten [1]. HMW-glutenin genes locate at the long arms of group 1 chromosomes (Glu-1 loci) [5]. The α-gliadins are encoded by the Gli-2 loci on the short arms of group 6 chromosomes. The γ-gliadins and ω-gliadins are encoded by the Gli-1 loci on the short arms of homeologous chromosome 1, and are tightly linked to the Glu-3 loci coding for LMW-glutenins [6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.