Abstract
Thermal properties of native and denatured biopolymers with quite different chemical and steric structure (globular and fibrillar proteins, DNA, starches) were studied by means of differential scanning calorimetry in a wide range of temperatures and concentrations of water. It was shown that both native and denatured humid biopolymers are glassy systems. The glass transition temperature of these systems strongly depends on percentage of water, with water being simultaneously an intrinsic element of systems' ordered structure and a plasticizer of its amorphous state. On the base of the absolute values of heat capacities for biopolymer-water systems as a whole, heat capacities for biopolymers themselves were calculated as functions on water concentration at fixed temperatures. The S-shaped change of heat capacity observed on diagrams of state both for native and denatured biopolymers is the manifestation of biopolymers' passing through the vitrification region, as it occurs for denatured samples at heating.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.