Abstract

Horizontal gene transfer (HGT) is increasingly being recognized as a significant force in the evolution of eukaryotic genomes. Plants have been both donors and recipients of horizontally mobilized genes and their genetic barter partners include prokaryotes and eukaryotes from all kingdoms. By expanding the gene pool beyond species boundaries, HGT events can drive genomic and phenotypic changes that increase fitness substantially. Accumulating evidence suggests that HGT is particularly prevalent between organisms that are either intimately associated or establish at least occasionally cell-cell contacts (e.g. in mutualistic or parasitic relationships). Here, I summarize current knowledge about HGT in plants, discuss possible molecular mechanisms and adaptive values of HGT events and highlight recent progress made in reconstructing HGT processes in laboratory experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.