Abstract

This paper discusses the asymptotic behavior as ɛ → 0+ of the chemical potentials λɛ associated with solutions of variational problems within the Van der Waals-Cahn-Hilliard theory of phase transitions in a fluid with free energy, per unit volume, given by ɛ2¦▽ϱ¦2+ W(ϱ), where ϱ is the density. The main result is that λɛ is asymptotically equal to ɛEλ/d+o(ɛ), with E the interfacial energy, per unit surface area, of the interface between phases, λ the (constant) sum of principal curvatures of the interface, and d the density jump across the interface. This result is in agreement with a formula conjectured by M. Gurtin and corresponds to the Gibbs-Thompson relation for surface tension, proved by G. Caginalp within the context of the phase field model of free boundaries arising from phase transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.