Abstract

The Fe73.5Cu1Nb3Si13.5B9/PZT thick film composites with excellent magnetoelectric (ME) coupling effect were synthesized by electrostatic spray depositing. The ME coupling characteristics of Fe73.5Cu1Nb3Si13.5B9/PZT thick film composites were investigated. It is found that the appropriate thickness ratio between magnetostrictive layers and piezoelectric layers (tm/tp) will be favorable to raise the resonance ME field output performance. The resonance frequency of ME field coefficient can be tuned by controlling tm/tp. The optimum resonance ME field coefficient of Fe73.5Cu1Nb3Si13.5B9/PZT thick film composites achieves 259.2 V/cm Oe at mechanical resonance frequency at 11.5 kHz with the dc bias magnetic field is 60 Oe. Remarkably, the proposed composites exhibit a giant ME effect and a higher ME voltage coefficient than the previous Terfenol-D/PZT laminated composites. It indicates that the mentioned Fe73.5Cu1Nb3Si13.5B9/PZT thick film composites have great potential for the application of highly sensitive magnetic field sensing and vibration energy harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.