Abstract

Current global change is associated with an increase in disturbance frequency and intensity, with the potential to trigger population collapses and to cause permanent transitions to new ecosystem states. However, our understanding of ecosystem responses to disturbances is still incomplete. Specifically, there is a mismatch between the diversity of disturbance regimes experienced by ecosystems and the one-dimensional description of disturbances used in most studies on ecological stability. To fill this gap, we conducted a full factorial experiment on microbial communities, where we varied the frequency and intensity of disturbances affecting species mortality, resulting in 20 different disturbance regimes. We explored the direct and long-term effects of these disturbance regimes on community biomass. While most communities were able to recover biomass and composition states similar to undisturbed controls after a halt of the disturbances, we identified some disturbance thresholds that had long-lasting legacies on communities. Using a model based on logistic growth, we identified qualitatively the sets of disturbance frequency and intensity that had equivalent long-term negative impacts on experimental communities. Our results show that an increase in disturbance intensity is a bigger threat for biodiversity and biomass recovery than the occurrence of more frequent but less intense disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.