Abstract

The combined action of ionizing radiation and microgravity will continue to influence future manned space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. Previous space flight experiments gave contradictory results: from inhibition of DNA repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. At the Radiation Biology Department of the German Aerospace Center (DLR), recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions. The space experiment “Cellular Responses to Radiation in Space” (CERASP) to be performed at the International Space Station (ISS) will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity. One of the biological endpoints will be survival reflected by radiation-dependent reduction of constitutive expression of the enhanced variant of green fluorescent protein (EGFP). A second end-point will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using the destabilized d2EGFP variant. The promoter element to be investigated reflects the activity of the nuclear factor kappa B (NF-κB) pathway. The NF-κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, apoptosis and tumor genesis. Results obtained with X-rays and accelerated heavy ions produced at the French heavy ion accelerator GANIL imply that densely ionizing radiation has a stronger potential to activate NF-κB dependent gene expression than sparsely ionizing radiation. The correlation of NF-κB activation to negative regulation of apoptosis could favor survival of cells with damaged DNA. A third endpoint to be examined will be DNA damage induced by combined exposure to radiation and microgravity and its repair. In the current work, preparatory experiments for the space experiment CERASP were performed. For radiation exposure on the ISS, an artificial radiation source is necessary since long-term exposure to cosmic radiation of frozen cells for damage accumulation will not be feasible. The biological activity of the designated space radiation source, the β-emitter promethium-147, was evaluated. Different shielding scenarios according to the experiment and safety requirements were evaluated. As growth surface for the human embryonic kidney cells, polytetrafluoroethylene and polyolefin foils were tested. For protection issues, the shielding effect of titanium foils was evaluated. With the prototype Pm-147 radiation source, the requirements of CERASP can be fulfilled with cells growing on the polytetrafluoroethylene foil and titanium foils for safety issues. In this setting, β-rays activated NF-κB-dependent reporter gene expression in human embryonic kidney cells. Regarding cell survival and NF-κB activation, the Pm-147 radiation source meets the requirements of the space experiment CERASP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.