Abstract

AbstractWithin the last decade, modern petrological and geochronological methods in combination with detailed studies of the field geology have allowed the reconstruction of tectonic processes in the northwestern part of the Caribbean Plate. The development of an oceanic Proto-Yucatán Basin can be traced from the Late Jurassic to the Mid-Cretaceous. From the Mid-Cretaceous onward, an interaction of this basin with the Caribbean Arc can be observed. Geochronological data prove continuous magmatic activity and generation of HP mineral suites in the Caribbean Arc from the Aptian to the Campanian/Maastrichtian. Magmatism ceased at least in onshore central Cuba at about 75 Ma, probably as the southern edge of the continental Yucatán Block began to interact with the advancing arc system. Similarly, the youngest recorded ages for peak metamorphism of high-pressure metamorphic rocks in Cuba cluster at 70 Ma; rapid uplift/exhumation of these rocks occurred thereafter. After this latest Cretaceous interaction with the southern Yucatán Block, the northern Caribbean Arc was dismembered as it entered the Proto-Yucatán Basin region. Because of the continued NE-directed movement, Proto-Yucatán Basin sediments were accreted to the arc and now form the North Cuban fold and thrust belt. Parts of the island arc have been thrust onto the southern Bahamas Platform along the Eocene suture zone in Cuba. Between the arc's interaction with Yucatán and the Bahamas (c. 70 to c. 40 Ma), the Yucatán intra-arc basin opened by extreme extension and local seafloor accretion between the Cayman Ridge (still part of Caribbean Plate) and the Cuban frontal arc terranes, the latter of which were kinematically independent of the Caribbean. Although magmatism ceased in central Cuba by 75 Ma, traces of continuing Early Palaeogene arc magmatism have been identified in the Cayman Ridge, suggesting that magmatism may not have ceased in the arc as a whole, but merely shifted south relative to Cuba. If so, a shallowing of the subduction angle during the opening of the Yucatán Basin would be implied. Further, this short-lived (?) Cayman Ridge arc is on tectonic strike with the Palaeogene arc in the Sierra Maestra of Eastern Cuba, suggesting south-dipping subduction zone continuity between the two during the final stages of Cuba–Bahamas closure. After the Middle Eocene, the east–west opening of the Cayman Trough left the present Yucatán Basin and Cuba as part of the North American Plate. The subduction geometry, P–T–t paths of HP rocks in Cuban mélanges, the time of magmatic activity and preliminary palaeomagnetic data support the conclusion that the Great Antillean arc was initiated by intra-oceanic subduction at least 900 km SW of the Yucatán Peninsula in the ancient Pacific. As noted above, the Great Antillean Arc spanned some 70 Ma prior to its Eocene collision with the Bahamas. This is one of the primary arguments for a Pacific origin of the Caribbean lithosphere; there simply was not sufficient space between the Americas, as constrained by Atlantic opening kinematics, to initiate and build the Antillean (and other) arcs in the Caribbean with in situ models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call